3.7: Rational Functions

Horizontal Asymptotes of Rational Functions

- A rational function is a quotient of two polynomial functions. We represent a rational function in the following form.
$r(x)=\frac{a_{n} x^{n}+\ldots+a_{0}}{b_{m} x^{m}+\ldots+b_{0}}$.
- Let r be a rational function in the most simplified form (no common factor between the numerator and the denominator) and $c_{1} \ldots c_{k}$ be zeros of the denominator, then $x=c_{1} \ldots x=c_{k}$ are the vertical asymptotes of the function.
- If a factor $(x-a)$ is a factor of both numerator and the denominator, then graph of r either has a hole or a vertical asymptote at $x=a$. (For example, $f(x)=\frac{x^{2}-9}{x-3}$ has no vertical asymptote but a hole at $x=3 ; f(x)=\frac{x^{2}-9}{(x-3)^{2}}$ has a vertical asymptote at $x=3$.)
- Let r be a rational function in the most simplified form (no common factor between the numerator and the denominator) and $d_{1} \ldots d_{j}$ be zeros of the numerator, then $x=d_{1}, x=d_{2}, \ldots, x=d_{j}$ are the x-intercepts (the points $\left.\left(d_{1}, 0\right),\left(d_{2}, 0\right), \cdots,\left(d_{j}, 0\right)\right)$.
- The y-intercept of any function $y=r(x)$ is $r(0)$ (the point $(0, r(0))$).

The horizontal asymptote of a rational function can be determined by looking at the degrees of the numerator and the denominator.

- The degree of numerator is less than the degree of denominator: horizontal asymptote at $y=$ 0.
- The degree of numerator is greater than the degree of denominator by one: no horizontal asymptote; slant asymptote. Use long division to find the slant asymptote.
- The degree of the numerator is equal to the degree of the denominator: horizontal asymptote at ratio of leading coefficients.
- The degree of numerator is greater than the degree of the denominator by more than one: The end behavior is not linear.
- In other words, for $r(x)=\frac{a_{n} x^{n}+\ldots+a_{0}}{b_{m} x^{m}+\ldots+b_{0}}$,

1. If $n<m, y=0$ is a horizontal asymptote.
2. If $n>m$ then the graph has no horizontal asymptote. If $n=m+1$ then it has slant asymptote. That is the quotient rendered by dividing the numerator by the denominator. $r(x)=a x+b+\frac{R(x)}{D(x)}$ implies $y=a x+b$ is the slant asymptote. Since $\frac{R(x)}{D(x)} \rightarrow 0$ as $x \rightarrow \pm \infty$
3. If $n=m$ then $y=\frac{a_{n}}{b_{m}}$ is the horizontal asymptote.

Graphing

- Find x-intercept, y-intercept and asymptotes of the function.
- Divide the x-axis into pieces that are divided by x-intercepts and vertical asymptotes. Find test point/s in each piece (y-intercept can count as one test point). Remember by intermediate value theorem, if the graph is not broken and does not cross x-axis within each piece, then the sign of the function does not change.
- Rational functions go to infinity at either side of a vertical asymptote. Use the test points to choose between $\pm \infty$ of functions around vertical asymptotes.
- Use the test points and horizontal asymptotes to find the behavior as $x \rightarrow \pm \infty$ and graph.
- Graph. The local minimum/maximum and more accurate graphing is part of Calculus.

Simplifying the Sum of Rational Expressions

- Make sure each expression is simplified. (Assuming that both original and the simplified form are in the same domain.)
- Find the least common denominator. This is going to be the new denominator.
- Multiply all rational terms to make the new numerator.
- After forming the new fraction, check if it can be simplified again.

Note: The asymptotic behavior of a graph is important in Calculus, Science and Engineering. We Section 3.7

Chapter 4
Chapter 4
look at the asymptotic behavior of $\overbrace{\text { rational functions }}, \overbrace{\text { exponential functions }}, \overbrace{\text { logarithmic functions }}$, Chapter 6 Chapter 6
$\overbrace{\text { some trigonometric functions, }}$ and $\overbrace{\text { some inverse trigonometric functions. }}$. Please be aware of them and learn them as we go.

1. Find the asymptotes of the following functions.
(a) $f(x)=\frac{x+1}{5 x^{2}+1}$
(b) $g(x)=\frac{5 x^{2}-1}{3 x^{2}+1}$
(c) $h(x)=\frac{x^{2}-2 x-1}{x-1}$
2. Let $f(x)=\frac{x^{2}+9}{144-9 x^{2}}$.
(a) Find all vertical asymptotes of the graph of $y=f(x)$.
(b) Find all horizontal asymptotes of the graph of $y=f(x)$.
3. If $\frac{1}{x}-\frac{1}{x-2}=\frac{x-10}{6 x}$, then the solution set is
(A) $\{-4,-8\}$
(C) $\{-4,8\}$
(E) $\{4,-4\}$
(G) $\{4\}$
(B) $\{4,8\}$
(D) $\{4,-8\}$
(F) $\{8,-8\}$
(H) No Solution
4. $\frac{\frac{1}{x}+\frac{1}{x^{4}}}{\frac{1}{x}}$ is equivalent to
(A) 1
(B) $\frac{1}{x^{4}}$
(C) $\frac{x+1}{x}$
(D) $\frac{x^{2}+1}{x^{2}}$
(E) $\frac{x^{3}+1}{x^{3}}$
(F) $\frac{x^{4}+1}{x^{4}}$
5. $\frac{5}{x-1}-\frac{3}{x-2}$ is equivalent to
(A) $\frac{2}{(x-1)(x-2)}$
(B) $\frac{2 x-16}{(x-1)(x-2)}$
(C) $\frac{2 x-11}{(x-1)(x-2)}$
(D) $\frac{2 x-7}{(x-1)(x-2)}$
(E) $\frac{2 x-4}{(x-1)(x-2)}$
6. Let $f(x)=\frac{x+b}{x-b}$ where $b>0$.
(a) Find all vertical asymptotes of the graph of $y=f(x)$ in terms of b.
(b) Find all horizontal asymptotes of the graph of $y=f(x)$.
(c) What is the x-intercept of $y=f(x)$ in terms of b ?
(d) What is the y-intercept of $y=f(x)$?
(e) Graph $y=f(x)$

7. Consider $f(x)=\frac{x^{2}-11 x+28}{x^{2}-4}$.
(a) Find x-intercepts of the graph of f.
(b) Find y-intercept of the graph of f.
(c) Find all asymptotes of the graph. Label as vertical, horizontal or oblique asymptote.
(d) Compute the following Values: $\begin{gathered}f(-10) \approx \\ f(5.5) \approx \\ f(10) \approx\end{gathered}$
(e) Graph f.

8. Graph $r(x)=\frac{x^{2}-16}{x-4}$. (Hint: Can you simplify $r(x)$?)

9. Find the average rate of change in $f(x)=\frac{1}{x}$ over the interval $[b, b+h]$; simplify as much as possible.
10. Simplify, within the domain, as much as possible $\frac{\left(x^{2}+1\right)(x-1)^{2}}{x^{4}-1}$. Watch Gateway Video 96.
11. Simplify, within the domain, as much as possible $\frac{x y+3 z y}{x^{2}+6 x z+9 z^{2}}$. Watch Gateway Video 97 .
12. Solve $25\left(\frac{g}{g+1}\right)^{2}-10\left(\frac{g}{g+1}\right)+1=0$ for g. Watch Gateway Video 53 .
13. (3 points) Find the average rate of change in $f(x)=\frac{3}{x+9}$ over the interval $[b, b+h]$; simplify as much as possible.
14. We are building a rectangular box with no lid with height h units and a square base with dimension x units. The only restriction is that the volume of the box has to be 45 unit 3.
(a) (1 point) Express h as a function of x.
(b) (1 point) Express the surface area as a function of x.

15. Consider $f(x)=\frac{x^{2}-11 x+28}{4-x^{2}}$.
(a) (0.5 points) Find x-intercepts of the graph of f.
(b) (0.25 points) Find y-intercept of the graph of f.
(c) (0.75 points) Find all asymptotes of the graph. Label as vertical, horizontal or oblique asymptote.
(d) (0.75 points) Find the following values $f(5.5) \approx$ $f(10) \approx$
(e) (0.75 points) Graph f.

Related Videos

1. Rational Equations: https://mediahub.ku.edu/media/t/l_026wea7i
2. Rational Graphing: https://mediahub.ku.edu/media/t/1_cx08u0he
3. Watch Gateway Video 49: https://mediahub.ku.edu/media/MATH+104+-+049.m4v/0_wplm5hon
4. Watch Gateway Video 50: https://mediahub.ku.edu/media/MATH+104+-+050.m4v/0_kzs0mryn
5. Watch Gateway Video 51: https://mediahub.ku.edu/media/MATH+104+-+051.m4v/0_oejtuzhe
6. Watch Gateway Video 52: https://mediahub.ku.edu/media/MATH+104+-+052.m4v/0_cwxjwx51
7. Watch Gateway Video 53: https://mediahub.ku.edu/media/MATH+104+-+053.m4v/0_qsrnuumh
8. Watch Gateway Video 96: https://mediahub.ku.edu/media/MATH+104+-+096/1_tvcwdpe5
9. Watch GatewayVideo 97: https://mediahub.ku.edu/media/MATH+104+-+097/l_nydl5gck
10. Watch Gateway Video 98: https://mediahub.ku.edu/media/MATH+104+-+098/1_9ropsjt7
11. Watch Gateway Video 99: https://mediahub.ku.edu/media/MATH+104+-+099/1_xh6emriy
12. Watch Gateway Video 100: https://mediahub.ku.edu/media/MATH+104+-+100/1_vipk44mh
13. Watch Gateway Video 101: https://mediahub.ku.edu/media/MATH+104+-+101/1_brmie4a2
14. Watch Gateway Video 102: https://mediahub.ku.edu/media/MATH+104+-+102/1_vqvwmltr
15. Watch Gateway Video 103: https://mediahub.ku.edu/media/MATH+104+-+103/1_i5clbjib
16. Watch Gateway Video 104: https://mediahub.ku.edu/media/MATH+104+-+104/1_gezilp46
17. Watch Gateway Video 105: https://mediahub.ku.edu/media/MATH+104+-+105/1_8f7rkbg8
